ProtoDUNE SP Analysis

Utilities

Leigh Whitehead
ProtoDUNE Analysis Workshop
27/01/19

Introduction

* There are a number of utility classes that are available to help
simplify analysis code

* Alot of the tools are to help users extract information from the
Pandora output in the recommended fashion

* Tools also exist to help with extraction of information from data
files (beam trigger etc)

e The tools can all be found here:

- Need to link the library:
* dunetpc/dune/Protodune/Analysis/ €ed o link the fibrary

ProtoDUNEANaUtils

. I Leigh Whitehead 2

https://cdcvs.fnal.gov/redmine/projects/dunetpc/repository/revisions/develop/show/dune/Protodune/Analysis

List of Utilities

* There are currently six classes for different objects:

ProtoDUNE data

MC Truth

Reconstructed Tracks
Reconstructed Showers
Reconstructed Slices
Reconstructed PFParticles

ProtoDUNEDataUtils
ProtoDUNETruthUtils
ProtoDUNETrackUtils
ProtoDUNEShowerUtils
ProtoDUNESIliceUtils
ProtoDUNEPFParticleUtils

* The header files are currently the best documentation for which
functions exist

* | will cover some highlights of the ones | think are most useful
e A focus on the PFParticles as these should be the objects used in analyses

. I Leigh Whitehead 3

NB: many of these functions in the P F P . I
coming slides make use of the a rt I C e S
pandora particle metadata

* One of the most important things for ProtoDUNE analyses is
knowing which particle comes from the beam

By default, this is “pandora”

* |Is agiven particle the beam particle?

/// Use the pandora metadata to tell us if this is a beam particle or not
bool IsBeamParticle(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel) const;

* Alternatively, we can request all primary particles in the beam slice

/// Return the pointers for the PFParticles in the beam slice. Returns an empty vector is no beam slice was found
const std::vector<const recob::PFParticlex> GetPFParticlesFromBeamSlice(art::Event const &evt, const std::string particlelLabel) const;

* If we just want to know the slice containing the beam particle

/// Try to get the slice tagged as beam. Returns 9999 if no beam slice was found
unsigned short GetBeamSlice(art::Event const &evt, const std::string particlelLabel) const;

* We can also get the BDT score that decides between beam / cosmic

/// Access the BDT output used to decide if a slice is beam-1like or cosmic-like
float GetBeamCosmicScore(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel) const;

. I Leigh Whitehead 4

PFParticles — Properties

* We may want to know about our particle
* Is this particle track-like or shower-like?

/// Is the particle track-like?
bool IsPFParticleTracklike(const recob::PFParticle &particle) const;

/// Is the particle track-like?
bool IsPFParticleShowerlike(const recob::PFParticle &particle) const;

 |s this particle one of the clear cosmics?

/// Pandora tags and removes clear cosmics before slicing, so check if this particle is a clear cosmic
bool IsClearCosmic(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel) const;

* Does the particle have a reconstructed TO?

/// Get the T@(s) from a given PFParticle
std::vector<anab::T@> GetPFParticleT@(const recob::PFParticle &particle, art::Event const &evt, std::string particleLabel) const;

AN

This vector will be empty if there is no
TO, otherwise it will have element
containing the measured TO

Leigh Whitehead

PFParticles — Associated Products

* Get associated objects (encapsulates the art associations)
* Get the track or shower from the PFParticle By default, this is “pandoraTrack”

/// Get the track associated to this particle. Returns a null pointer if not found. ‘\\\s‘
const recob::Trackx GetPFParticleTrack(const recob::PFParticle &particle, art::Event const &evt, const std::string particlelLabel, const std::string trackLabel) const;

/// Get the shower associated to this particle. Returns a null pointer if not found.
const recob::Showerx GetPFParticleShower(const recob::PFParticle &particle, art::Event const &evt, const std::string particlelLabel, const std::string showerLabel) const;

Pl

By default, this is “pandoraShower”
* Get the clusters

/// Get the clusters associated to the PFParticle
const std::vector<const recob::Clusterx> GetPFParticleClusters(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel) const;

* Get the space points

// Get the SpacePoints associated to the PFParticle
const std::vector<const recob::SpacePointx> GetPFParticleSpacePoints(const recob::PFParticle &particle, art::Event const &evt, const std::string particlelLabel) const;

* @Get the hits

/// Get the hits associated to the PFParticle
const std::vector<const recob::Hitx> GetPFParticleHits(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel) const;

Leigh Whitehead

PFParticles — Vertices

* There has been some recent discussion about particle vertices
* These functions might be updated soon, but the current status is a follows:

* Particle vertex means the start point of the object

/// Function to find the interaction vertex of a primary PFParticle
const TVector3 GetPFParticleVertex(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel, const std::string trackLabel) const;

* Showers: this comes from from the recob::Vertex associated to the PFParticle
e Beam tracks: most upstream end of the recob::Track
e Cosmic tracks: end of the recob::Track with the larger y-coordinate

e Secondary vertex means the interaction point

/// Function to find the secondary interaction vertex of a primary PFParticle
const TVector3 GetPFParticleSecondaryVertex(const recob::PFParticle &particle, art::Event const &evt, const std::string particleLabel, const std::string trackLabel) const;

e Showers: returns a dummy vector as showers have no secondary vertex
* Beam tracks: most downstream end of the recob::Track

e Cosmic tracks: end of the recob::Track with the smaller y-coordinate

We are currently trying to optimise this information within Pandora and these tools, so things
are subject to change, but hopefully in an invisible way to the user

. I Leigh Whitehead 7

Data Utilities

* The data utilities mostly help with trigger information and beam
PID

* Thanks to Justin for putting most of this together
* Simple beam trigger check (using the CTB)

/*%

* Returns true if the ProtoDUNE trigger says this is a beam trigger
*/

bool IsBeamTrigger(art::Event const & evt) const;

* Beamline beam trigger check

VESS

* Returns true if the beamline instrumentation has a good trigger
* that matches the ProtoDUNE trigger.

*/

bool IsGoodBeamlineTrigger(art::Event const & evt) const;

* Check if we had all fembs working in a given APA

/// Get number of active fembs in an APA
int GetNActiveFembsForAPA(art::Event const & evt, int apa) const;

. I Leigh Whitehead 8

Data Utilities

* The data utilities mostly help with trigger information and beam
PID

* Thanks to Justin for putting most of this together

* There are a number of very important functions for accessing the
beamline PID and TOF information

* Please use these functions!

* Too many to list here, but they are documented in the header file
* dunetpc/dune/Protodune/Analysis/ProtoDUNEDataUtils.h

. I Leigh Whitehead 9

A Usage Example

* There is a skeleton module you can use to get started

* dunetpc/dune/Protodune/Analysis/BeamExample/BeamExample_module.cc

* [t runs on data and MC and selects the reconstructed beam particle
and extracts some information

bool beamTriggerEvent = false;
// If this event is MC then we can check what the true beam particle is For MC, it finds the triggered true particle using
if(!evt.isRealData()){ .
// Get the truth utility to help us out the truth utility
protoana::ProtoDUNETruthUtils truthUtil;
// Firstly we need to get the list of MCTruth objects from the generator. The standard protoDUNE
// simulation has fGeneratorTag = '"generator"
auto mcTruths = evt.getValidHandle<std::vector<simb::MCTruth>>(fGeneratorTag);
// mcTruths is basically a pointer to an std::vector of simb::MCTruth objects. There should only be one
// of these, so we pass the first element into the function to get the good particle
const simb::MCParticlex geantGoodParticle = truthUtil.GetGeantGoodParticle((xmcTruths) [@0],evt);
if(geantGoodParticle != 0x0){

std::cout << "Found GEANT particle corresponding to the good particle with pdg = " << geantGoodParticle->PdgCode() << std::endl;
}
}
else{
// For data we can see if this event comes from a beam trigger : R R
beamTriggerEvent = dataUtil.IsBeamTrigger(evt); For Data’ It |OOkS fOI’ a beam trlgger Using the
if (beamTriggerEvent){ data utility
std::cout << "This data event has a beam trigger" << std::endl;
}
}

Leigh Whitehead

A Usage Example

* There is a skeleton module you can use to get started

* dunetpc/dune/Protodune/Analysis/BeamExample/BeamExample_module.cc

* It then looks for the beam PFParticles

// Get the PFParticle utility
protoana::ProtoDUNEPFParticleUtils pfpUtil;

// Get all of the PFParticles, by default from the "pandora" product
auto recoParticles = evt.getValidHandle<std::vector<recob::PFParticle>>(fPFParticleTag);

// We'd like to find the beam particle. Pandora tries to do this for us, so let's use the PFParticle utility
// to look for it. Pandora reconstructs slices containing one (or sometimes more) primary PFParticles. These
// are tagged as either beam or cosmic for ProtoDUNE. This function automatically considers only those

// PFParticles considered as primary

std::vector<const recob::PFParticlex> beamParticles = pfpUtil.GetPFParticlesFromBeamSlice(evt, fPFParticleTag);

if(beamParticles.size() == 0){
std::cerr << "We found no beam particles for this event... moving on" << std::endl;
return;

}

Here we use the PFParticle utility to get all of the
primary particles in the beam slice (typically just one)

Leigh Whitehead

A Usage Example

* There is a skeleton module you can use to get started

* dunetpc/dune/Protodune/Analysis/BeamExample/BeamExample_module.cc

// We can now look at these particles
for(const recob::PFParticlex particle : beamParticles){

// "particle" is the pointer to our beam particle. The recob::Track or recob::Shower object
// of this particle might be more helpful. These return null pointers if not track-like / shower-1like

const recob::Trackkx thisTrack = pfpUtil.GetPFParticleTrack(xparticle,evt,fPFParticleTag, fTrackerTag); EXtraCt the traCk or Shower that forms
const recob::Showerx thisShower = pfpUtil.GetPFParticleShower(xparticle,evt,fPFParticleTag, fShowerTag); : .
if(thisTrack != @x@0) std::cout << "Beam particle is track-like" << std::endl; thIS beam partlde

if(thisShower != @x@) std::cout << "Beam particle is shower-like" << std::endl;

// Find the particle vertex. We need the tracker tag here because we need to do a bit of
// additional work if the PFParticle is track-like to find the vertex.
const TVector3 vtx = pfpUtil.GetPFParticleVertex(xparticle,evt,fPFParticleTag, fTrackerTag);

. . ‘ o ‘ . , Get the vertex and interaction vertex
// Now we can look for the interaction point of the particle if one exists, i.e where the particle
// scatters off an argon nucleus. Shower-like objects won't have an interaction point, so we can if it exists
// check this by making sure we get a sensible position
const TVector3 interactionVtx = pfpUtil.GetPFParticleSecondaryVertex(xparticle,evt,fPFParticleTag, fTrackerTag);

// Let's get the daughter PFParticles... we can do this simply without the utility .

for(const int daughterID : particle->Daughters()){ recob::PFParticle daughter access
// Daughter ID is the element of the original recoParticle vector
const recob::PFParticle xdaughterParticle = &(recoParticles—>at(daughterID));
std::cout << "Daughter " << daughterID << " has " << daughterParticle->NumDaughters() << " daughters" << std::endl;

}

// For actually studying the objects, it is easier to have the daughters in their track and shower forms.

// We can use the utility to get a vector of track-like and a vector of shower-like daughters

const std::vector<const recob::Trackx> trackDaughters = pfpUtil.GetPFParticleDaughterTracks(*particle,evt, fPFParticleTag, fTrackerTag);

const std::vector<const recob::Showerx> showerDaughters = pfpUtil.GetPFParticleDaughterShowers(xparticle,evt, fPFParticleTag, fShowerTag);

std::cout << "Beam particle has " << trackDaughters.size() << " track-like daughters and " << showerDaughters.size() << " shower-like daughters." << std::endl;

Get the track and shower objects corresponding to the daughter particles

Leigh Whitehead

Summary

* | hope that these tools can help to have a unified approach for
accessing the important information for ProtoDUNE analyses

* | haven’t been able to cover everything that’s included in the
tools but I'd invite anyone starting an analysis to take a look

* It’ll save time and effort if the information you need is already available
somewhere

* These tools are by no means complete!

* You should all feel free to suggest new features or modifications to the
current ones to be more useful for your given use-case

* One of these | know is to return art::Ptr objects... | will look into having
functions to return these as well as const recob::Object pointers

. I Leigh Whitehead

